This is a review submitted to Mathematical Reviews/MathSciNet.

Reviewer Name: Konstantopoulos, Takis

Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics Uppsala University PO Box 480 SE-75106 Uppsala SWEDEN takiskonst@gmail.com

Author: Brudern, Jorg; Dietmann, Rainer

Title: Random congruences.

MR Number: MR3479167

Primary classification:

Secondary classification(s):

Review text:

amsmath, amsthm, amsfonts, amssymb, mathrsfs, epsfig, bm

Given a set of coefficients $\mathbf{a} = \{a_{j_1,\ldots,j_d}\}$, let Let $F_{\mathbf{a}}(X_1,\ldots,X_s)$ be a homogeneous polynomial in s variables of degree d, that is,

$$F_{\mathbf{a}}(X_1,\ldots,X_s) = \sum_{1 \le j_1 \le \cdots \le j_d \le s} a_{j_1,\ldots,j_d} X_{j_1} \cdots X_{j_d}.$$

Let q > 1 be a positive integer, $1 \le B < q$, and let X(q, B) be the set of all integer s-tuples (x_1, \ldots, x_s) such that $-B \le x_j \le B$ and $gcd(x_j, q) = 1$ for all j. Let $N_{\mathbf{a}}(q, B)$ be the number of $(x_1, \ldots, x_s) \in X(q, B)$ that satisfy

$$F_{\mathbf{a}}(x_1,\ldots,x_s) \equiv 0 \mod q.$$

A set **a** of coefficients is called admissible if the coefficients range over a complete set of residues (mod q) or some of the diagonal coefficients $a_{j,\ldots,j}$ are set equal to 0. Let \mathfrak{A} be the set of admissible coefficients. Then

$$\sum_{\mathbf{a} \in \mathfrak{A}} N_{\mathbf{a}}(q, B) = \frac{|\mathfrak{A}| |X(q, B)|}{q}$$

It makes sense then to consider

$$V = \sum_{\mathbf{a} \in \mathfrak{A}} \left(N_{\mathbf{a}}(q, B) - \frac{|X(q, B)|}{q} \right)^2$$

as a "variance" (that is, $V/|\mathfrak{A}|$ is the variance of the random variable $N_{\mathbf{a}}(q, B)$ when **a** is chosen uniformly at random from \mathfrak{A}). The main result is the following bound for V. If $s \ge 3$ and $0 < \delta \le 1$, there exists constant C such that if q contains no prime factors less than q^{δ} and $q^{1/s} \le B < q$ then

$$V \le \frac{C|\mathfrak{A}|}{q^2} (B^s q + B^{2s} q^{\delta(2-s)}).$$

An application to the geometry of numbers is also given.

Comments to the MR Editors (not part of the Review Text):

The paper requires the use of a curly X. I used the command X It didn't work on your system. I indicated the packages I use, the one responsible for this is mathrsfs. Still, it didn't work.