This is a review submitted to Mathematical Reviews/MathSciNet.
Reviewer Name: Konstantopoulos, Takis
Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics
Uppsala University
PO Box 480
SE-75106 Uppsala
SWEDEN
takiskonst@gmail.com
Author: Brudern, Jorg; Dietmann, Rainer
Title: Random congruences.
MR Number: MR3479167
Primary classification:
Secondary classification(s):

Review text:

amsmath,amsthm,amsfonts,amssymb,mathrsfs,epsfig,bm
Given a set of coefficients $\mathbf{a}=\left\{a_{j_{1}, \ldots, j_{d}}\right\}$, let Let $F_{\mathbf{a}}\left(X_{1}, \ldots, X_{s}\right)$ be a homogeneous polynomial in s variables of degree d, that is,

$$
F_{\mathbf{a}}\left(X_{1}, \ldots, X_{s}\right)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{d} \leq s} a_{j_{1}, \ldots, j_{d}} X_{j_{1}} \cdots X_{j_{d}}
$$

Let $q>1$ be a positive integer, $1 \leq B<q$, and let $X(q, B)$ be the set of all integer s-tuples $\left(x_{1}, \ldots, x_{s}\right)$ such that $-B \leq x_{j} \leq B$ and $\operatorname{gcd}\left(x_{j}, q\right)=1$ for all j. Let $N_{\mathbf{a}}(q, B)$ be the number of $\left(x_{1}, \ldots, x_{s}\right) \in X(q, B)$ that satisfy

$$
F_{\mathbf{a}}\left(x_{1}, \ldots, x_{s}\right) \equiv 0 \quad \bmod q
$$

A set a of coefficients is called admissible if the coefficients range over a complete set of residues $(\bmod q)$ or some of the diagonal coefficients $a_{j, \ldots, j}$ are set equal to 0 . Let \mathfrak{A} be the set of admissible coefficients. Then

$$
\sum_{\mathbf{a} \in \mathfrak{A}} N_{\mathbf{a}}(q, B)=\frac{|\mathfrak{A}||X(q, B)|}{q}
$$

It makes sense then to consider

$$
V=\sum_{\mathbf{a} \in \mathfrak{A}}\left(N_{\mathbf{a}}(q, B)-\frac{|X(q, B)|}{q}\right)^{2}
$$

as a "variance" (that is, $V /|\mathfrak{A}|$ is the variance of the random variable $N_{\mathbf{a}}(q, B)$ when \mathbf{a} is chosen uniformly at random from $\mathfrak{A})$. The main result is the following
bound for V. If $s \geq 3$ and $0<\delta \leq 1$, there exists constant C such that if q contains no prime factors less than q^{δ} and $q^{1 / s} \leq B<q$ then

$$
V \leq \frac{C|\mathfrak{A}|}{q^{2}}\left(B^{s} q+B^{2 s} q^{\delta(2-s)}\right)
$$

An application to the geometry of numbers is also given.

Comments to the MR Editors (not part of the Review Text):

The paper requires the use of a curly X. I used the command X It didn't work on your system. I indicated the packages I use, the one responsible for this is mathrsfs. Still, it didn't work.

